HW ONE: MTH 420, Spring 2018

Ayman Badawi

QUESTION 1. Let R be a commutative ring, I be an ideal of R (it is possible that $I=R$), and $A=R(+) I$. Define + and - on A as following:
$(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c, a d+b c)$. Then $(A,+,$.$) is a commutative ring (do not show$ that)
(i) Show that $1_{A}=\left(1_{R}, 0_{R}\right)$ (it is clear that $\left.0_{A}=\left(0_{R}, 0_{R}\right)\right)$ Trivial, no comments
(ii) Let P be a prime ideal of A. Show that $P=L(+) I=\{(a, b) \mid a \in L$ and $b \in I\}$ for some prime ideal L of R.

Solution: First we show that $P=L(+) I$ for some proper ideal L of R. Let $L=\{a \in R \mid(a, i) \in P$ for some $i \in I\}$. We show that L is an ideal of R. Let $x, y \in L$. We show $x-y \in L$. Since $x, y \in L$, we have $(x, a),(y, b) \in P$ for some $a, b \in I$. Since P is an ideal of $A,(x, a)-(y, b)=(x-y, a-b) \in P$. Thus $x-y \in L$. Let $x \in L$ and $r \in R$. We show $r x \in L$. Since $x \in L$, we have $(x, c) \in P$ for some $c \in I$. Since P is an ideal of $A,(r, 0)(x, c)=(r x, r c) \in P$. Thus $r x \in L$. Thus L is an ideal of R. It is clear that $P \subseteq L(+) I$. We show $L(+) I \subseteq P$. First we show that $0(+) I \subseteq P$. Let $(0, i) \in 0(+) I$. Then $(0, i)^{2}=(0,0) \in P$. Since P is prime, $(0, i) \in P$ (This is the first time we used the hypothesis that \mathbf{P} is prime). Thus $0(+) I \subseteq P$. Now let $(a, b) \in L(+) I$. We show $(a, b) \in P$. Since $a \in L$, we have $(a, v) \in P$ for some $v \in I$. Since I is an ideal of R, there exists $w \in I$ such that $v+w=b$. Hence $(a, v)+(0, w)=(a, v+w)=(a, b) \in P$. Thus $P=L(+) I$. Since P is prime, $P \neq A$. Thus L is a proper ideal of R. We show L is a prime ideal of R. Assume $x y \in L$ for some $x, y \in R$. We show that $x \in L$ or $y \in L$. Since $x y \in L$, we have $(x, s)(y, d)=(x y, s y+x d) \in P=L(+) I$ for some $s, d \in I$. Since P is prime, we have $(x, s) \in P$ or $(y, d) \in P$. Thus $x \in L$ or $y \in L$.
(iii) If M is a maximal ideal of A ? can you determine the form of M ? i.e., see (ii)

Solution: Since M is a maximal ideal of A, M is a prime ideal of A. Hence $M=L(+) I$ for some prime ideal L of R. We show that L is a maximal ideal of R. Pick $r \in R \backslash L$. We show that $r x+h=1$ for some $x \in R$ and $h \in L$. Since $r \notin L,(r, 0) \notin M$. Since M is a maximal ideal of A, we have $(1,0)=(r, 0)(x, f)+(h, k)$ for some $x \in R, h \in L$, and $f, k \in I$. Thus $1=r x+h$. Hence L is a maximal ideal of R.
(iv) Let $U(A)$ be the set of all units of A (i.e., set of all invertible elements of A). Show that $U(A)=U(R)(+) I$.

Solution: Let $(v, k) \in U(A)$. Then $(u, k)(d, v)=(1,0) \in A$ for some $(v, d) \in A$. Thus $d=u^{-1}$ in R. Thus $U(A) \subseteq U(R)(+) I$. Now Let $x \in U(R)$ and $i \in I$. We show $(x, i) \in U(A)$. We need to construct an element $h \in A$ such that $(x, i) h=(1,0)$. Let $h=\left(x^{-1},-i x^{-2}\right)$. Note that $-i x^{-2} \in I$ since I is an ideal. Now $(x, i) h=(x, i)\left(x^{-1},-i x^{-2}\right)=(1,0)$. Thus $(x, i) \in U(A)$, and hence $U(A)=U(R)(+) I$.
(v) Convince me that $Z(A)=Z(R)(+) I$.

Let $(a, c) \in Z(A)$ and we may assume that $(a, c) \neq(0,0)$. Hence there is $(f, h) \in A$ such that $(a, c)(f, h)=$ $(0,0)$. Thus $a \in Z(R)$. Hence $Z(A) \subseteq Z(R)(+) I$. Now we show $Z(R)(+) I \subseteq Z(A)$. Let $i \in I$ such that $i \neq 0$. Since $(0, i)(0, i)=(0,0)$, we conclude that $(0, i) \in Z(A)$. Thus $0(+) I \subseteq Z(A)$. Assume $a \in Z(R)$ and $i \in I$ such that $a \neq 0$. We show that $(a, i) \in Z(A)$. We need to construct an element $h \in Z(A)$ such that $(a, i) h=(0,0)$ and $h \neq(0,0)$. Since $a \in Z(R)$ and $a \neq 0$, there exists $b \in Z(R)$ such that $b \neq 0$ and $a b=0$. Now suppose $b k=0$ for every $k \in I$. Then $(a, i)(b, 0)=(0,0)$ and $(a, i) \in Z(A)$. Assume that $b m \neq 0$ for some $m \in I$. Then $m \neq 0$. Then $(a, i)(0, b m)=(0, a b m)=(0,0)$ (since $a b=0)$. Tthus $(a, i) \in Z(A)$. Done
(vi) Let $N(A)=\left\{x \in A \mid x^{n}=(0,0)\right\}$. Convince me that $N(A)$ is never an empty set. Can you describe $N(A)$? (see (ii))
claim: $N(A)=N(R)(+) I$. Let $(x, i) \in N(A)$. It is clear that $x \in N i(R)$. Thus $N(A) \subseteq N(R)(+) I$. Assume that $(a, i) \in N(R)(+) I$. We show that $(a, i) \in N(A)$. By induction, we see that $(a, i)^{n}=\left(a^{n}, n a^{n-1} i\right)$ for every $n \geq 2$. Since $(a, i) \in N(R)(+) I$, we conclude that $a \in N(R)$ and there is a positive integer $m \geq 2$ such that $a^{m}=0$. Hence $(a, i)^{m+1}=\left(a^{m+1},(m+1) a^{m} i\right)=(0,0)$. Thus $(a, i) \in N(A)$. Done
QUESTION 2. Let $A=Z_{36}(+) 6 Z_{36}$. (note $6 Z_{36}$ is the ideal of Z_{36} generated by 6) Then in view of question (1) find the following
(i) All prime ideals of A
(ii) All maximal ideals of A
(iii) $U(A)$
(iv) $Z(A)$
(v) $N(A)$

QUESTION 3. Choose $n \geq 1$ distinct prime numbers in Z, say p_{1}, \ldots, p_{n}. Let $D=\left\{a / b \in Q \mid a \in Z, b \in Z^{*}\right.$ and $p_{i} \nmid b$ for every $1 \leq i \leq n\}$.(Hint: note that if v, k are positive integers in Z , then $\operatorname{gcd}(v, k)=c_{1} v+c_{2} k$ for some $c_{1}, c_{2} \in Z$)
(i) Prove that $(D,+, \cdot)$ is a subring of Q with identity $1=1_{Q}$. Here + and are the normal operation on Q

Solution: By construction of D using the normal addition and multiplication, it is clear that $x-y \in D$ and $x y \in D$. Done
(ii) Prove that D has exactly n distinct maximal ideal.

Solution: First note that $Z \subset D \subset Q$. Also note that when we write $x=a / b \in D$, then it is understood that $p_{i} \nmid b$ for every $1 \leq i \leq n$. For each $1 \leq i \leq n$. We show that $p_{i} D$ is a maximal ideal of D. Since $p_{i} D=\operatorname{span}\left\{p_{i}\right\}$ it is trivial that $p_{i} D$ is an ideal. We show that $p_{i} D \neq D$. Suppose that $p_{i} x=1$ in D for some $x \in D$. Then $x=1 / p_{i} \notin D$, a contradiction (note that \mathbf{D} consists of elements of the form a/b where $a, \operatorname{bin} Z$ and $p_{i} \nmid b$ for every $1 \leq i \leq n$). Thus $p_{i} D$ is a proper ideal of D. Assume $\frac{a}{b}$ (written in reduced form) $\in D \backslash p_{i} D$. We show that $x \frac{a}{b}+y=1$ for some $x \in D$ and $y \in p_{i} D$. Since $\frac{a}{b} \notin p_{i} D$, we conclude that $p_{i} \nmid a$. Thus $\operatorname{gcd}\left(a, p_{i}\right)=1$. Hence $1=h p_{i}+k a$ for some $h, k \in Z$. Thus $b=b h p_{i}+b k a$. Hence $1=\frac{b}{b}=\frac{b h p_{i}}{b}+\frac{b k a}{b}$. Let $y=\frac{b h p_{i}}{b}$. Then $y \in p_{i} D$. Let $x=b k$. Then $b k \in D$. Thus $1=x \frac{a}{b}+y$ as desired. Hence $p_{i} D$ is a maximal ideal of D for every $1 \leq i \leq n$. Hence D has at least n maximal ideals. Now we show that D will not have more than n maximal ideals. Suppose that M is a maximal ideal of D and $M \neq p_{i} D$ for every $1 \leq i \leq n$. Then there exists an $x=a / b \in M$ such that $x \notin p_{i} D$ for every $1 \leq i \leq n$. Hence $a \neq 0$ and $p_{i} \nmid a$ for every $1 \leq i \leq n$. Hence $b / a \in D$. Since $(a / b)(b / a)=1 i n D$, we conclude that $x=a / b$ is a unit of D, a contradiction (since proper ideals do not contain units). Thus D has exactly n maximal ideals.
(iii) Say M_{1}, \ldots, M_{n} are the maximal ideals of D, and let $J(D)=\cap_{i=1}^{n} M_{i}$. Find $J(D)$

Solution: By the proof of (ii), each $M_{i}=p_{i} D$ for every $1 \leq i \leq n$. Hence $J(D)=M_{1} \cap M_{2} \cap \cdots \cap M_{n}=$ $p_{1} p_{2} \cdots p_{n} D=\operatorname{span}\left\{p_{1} p_{2} \cdots p_{n}\right\}$.
(iv) Prove that $u+m$ is a unit of D for every $m \in J(D)$ and for every $u \in U(D)$.

Solution Let $u=a / b$ be a unit in D. Hence $a \neq 0$ and $(a / b)(b / a)=1$ in D, and thus $b / a \in D$. Thus $p_{i} \nmid a$ for every $1 \leq i \leq n$. Also note that since $u=a / b \in D$, we conclude that $p_{i} \nmid b$ for every $1 \leq i \leq n$. Let $m \in J(D)$. Them $m=\frac{p_{1} p_{2} \cdots p_{n} h}{d}$, for some $h / d \in D$ (note that $p_{i} \nmid d$ for every $1 \leq i \leq n$). Now $u+m=\frac{a}{b}+\frac{p_{1} p_{2} \cdots p_{n} h}{d}=\frac{d a+b p_{1} p_{2} \cdots p_{n} h}{b d}$. Now note that $p_{i} \nmid d a+b p_{1} p_{2} \cdots p_{n} h$ for every $1 \leq i \leq n$ (because $p_{i} \mid b p_{1} p_{2} \cdots p_{n} h$ and $p_{i} \nmid a b$ for every $1 \leq i \leq n$). Thus $W=\frac{b d}{d a+b p_{1} p_{2} \cdots p_{n} h} \in D$. Hence $(\mathbf{u}+\mathbf{m}) \mathbf{w}=\mathbf{1}$ in \mathbf{D}. Thus $u+m$ is a unit of D.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

